Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Systematic Analysis of Alkaline/Neutral Invertase Genes Reveals the Involvement of Smi-miR399 in Regulation of SmNINV3 and SmNINV4 in Salvia miltiorrhiza.

Identifieur interne : 000695 ( Main/Exploration ); précédent : 000694; suivant : 000696

Systematic Analysis of Alkaline/Neutral Invertase Genes Reveals the Involvement of Smi-miR399 in Regulation of SmNINV3 and SmNINV4 in Salvia miltiorrhiza.

Auteurs : Hong Zhou [République populaire de Chine] ; Caili Li [République populaire de Chine] ; Xiaoxiao Qiu [République populaire de Chine] ; Shanfa Lu [République populaire de Chine]

Source :

RBID : pubmed:31717988

Abstract

Alkaline/neutral invertases (NINVs), which irreversibly catalyze the hydrolysis of sucrose into fructose and glucose, play crucial roles in carbohydrate metabolism and plant development. Comprehensive insights into NINV genes are lacking in Salvia miltiorrhiza, a well-known traditional Chinese medicinal (TCM) plant with significant medicinal and economic value. Through genome-wide prediction, nine putative SmNINV genes, termed SmNINV1-SmNINV9, were identified. Integrated analysis of gene structures, sequence features, conserved domains, conserved motifs and phylogenetic trees revealed the conservation and divergence of SmNINVs. The identified SmNINVs were differentially expressed in roots, stems, leaves, flowers, and different root tissues. They also responded to drought, salicylic acid, yeast extract, and methyl jasmonate treatments. More importantly, computational prediction and experimental validation showed that SmNINV3 and SmNINV4 were targets of Smi-miR399, a conserved miRNA previously shown to affect Pi uptake and translocation through the cleavage of PHOSPHATE2 (PHO2). Consistently, analysis of 43 NINV genes and 26 miR399 sequences from Arabidopsis thaliana, Populus trichocarpa, Manihot esculenta, and Solanum lycopersicum showed that various AtNINV, PtNINV, MeNINV, and SlNINV genes were regulated by miR399. It indicates that the miR399-NINV module exists widely in plants. Furthermore, Smi-miR399 also cleaved SmPHO2 transcripts in S. miltiorrhiza, suggesting the complexity of NINVs, PHO2, and miR399 networks.

DOI: 10.3390/plants8110490
PubMed: 31717988
PubMed Central: PMC6918228


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Systematic Analysis of Alkaline/Neutral Invertase Genes Reveals the Involvement of Smi-miR399 in Regulation of
<i>SmNINV3</i>
and
<i>SmNINV4</i>
in
<i>Salvia miltiorrhiza</i>
.</title>
<author>
<name sortKey="Zhou, Hong" sort="Zhou, Hong" uniqKey="Zhou H" first="Hong" last="Zhou">Hong Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Caili" sort="Li, Caili" uniqKey="Li C" first="Caili" last="Li">Caili Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Xiaoxiao" sort="Qiu, Xiaoxiao" uniqKey="Qiu X" first="Xiaoxiao" last="Qiu">Xiaoxiao Qiu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31717988</idno>
<idno type="pmid">31717988</idno>
<idno type="doi">10.3390/plants8110490</idno>
<idno type="pmc">PMC6918228</idno>
<idno type="wicri:Area/Main/Corpus">000619</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000619</idno>
<idno type="wicri:Area/Main/Curation">000619</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000619</idno>
<idno type="wicri:Area/Main/Exploration">000619</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Systematic Analysis of Alkaline/Neutral Invertase Genes Reveals the Involvement of Smi-miR399 in Regulation of
<i>SmNINV3</i>
and
<i>SmNINV4</i>
in
<i>Salvia miltiorrhiza</i>
.</title>
<author>
<name sortKey="Zhou, Hong" sort="Zhou, Hong" uniqKey="Zhou H" first="Hong" last="Zhou">Hong Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Caili" sort="Li, Caili" uniqKey="Li C" first="Caili" last="Li">Caili Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Xiaoxiao" sort="Qiu, Xiaoxiao" uniqKey="Qiu X" first="Xiaoxiao" last="Qiu">Xiaoxiao Qiu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plants (Basel, Switzerland)</title>
<idno type="ISSN">2223-7747</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Alkaline/neutral invertases (
<i>NINVs</i>
), which irreversibly catalyze the hydrolysis of sucrose into fructose and glucose, play crucial roles in carbohydrate metabolism and plant development. Comprehensive insights into
<i>NINV</i>
genes are lacking in
<i>Salvia miltiorrhiza</i>
, a well-known traditional Chinese medicinal (TCM) plant with significant medicinal and economic value. Through genome-wide prediction, nine putative
<i>SmNINV</i>
genes, termed
<i>SmNINV1</i>
-
<i>SmNINV9</i>
, were identified. Integrated analysis of gene structures, sequence features, conserved domains, conserved motifs and phylogenetic trees revealed the conservation and divergence of
<i>SmNINVs</i>
. The identified
<i>SmNINVs</i>
were differentially expressed in roots, stems, leaves, flowers, and different root tissues. They also responded to drought, salicylic acid, yeast extract, and methyl jasmonate treatments. More importantly, computational prediction and experimental validation showed that
<i>SmNINV3</i>
and
<i>SmNINV4</i>
were targets of Smi-miR399, a conserved miRNA previously shown to affect Pi uptake and translocation through the cleavage of
<i>PHOSPHATE2</i>
(
<i>PHO2</i>
). Consistently, analysis of 43
<i>NINV</i>
genes and 26 miR399 sequences from
<i>Arabidopsis thaliana</i>
,
<i>Populus trichocarpa</i>
,
<i>Manihot esculenta,</i>
and
<i>Solanum lycopersicum</i>
showed that various
<i>AtNINV</i>
,
<i>PtNINV</i>
,
<i>MeNINV,</i>
and
<i>SlNINV</i>
genes were regulated by miR399. It indicates that the miR399-
<i>NINV</i>
module exists widely in plants. Furthermore, Smi-miR399 also cleaved
<i>SmPHO2</i>
transcripts in
<i>S. miltiorrhiza</i>
, suggesting the complexity of
<i>NINVs</i>
,
<i>PHO2,</i>
and miR399 networks.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31717988</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2223-7747</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2019</Year>
<Month>Nov</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Plants (Basel, Switzerland)</Title>
<ISOAbbreviation>Plants (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Systematic Analysis of Alkaline/Neutral Invertase Genes Reveals the Involvement of Smi-miR399 in Regulation of
<i>SmNINV3</i>
and
<i>SmNINV4</i>
in
<i>Salvia miltiorrhiza</i>
.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E490</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/plants8110490</ELocationID>
<Abstract>
<AbstractText>Alkaline/neutral invertases (
<i>NINVs</i>
), which irreversibly catalyze the hydrolysis of sucrose into fructose and glucose, play crucial roles in carbohydrate metabolism and plant development. Comprehensive insights into
<i>NINV</i>
genes are lacking in
<i>Salvia miltiorrhiza</i>
, a well-known traditional Chinese medicinal (TCM) plant with significant medicinal and economic value. Through genome-wide prediction, nine putative
<i>SmNINV</i>
genes, termed
<i>SmNINV1</i>
-
<i>SmNINV9</i>
, were identified. Integrated analysis of gene structures, sequence features, conserved domains, conserved motifs and phylogenetic trees revealed the conservation and divergence of
<i>SmNINVs</i>
. The identified
<i>SmNINVs</i>
were differentially expressed in roots, stems, leaves, flowers, and different root tissues. They also responded to drought, salicylic acid, yeast extract, and methyl jasmonate treatments. More importantly, computational prediction and experimental validation showed that
<i>SmNINV3</i>
and
<i>SmNINV4</i>
were targets of Smi-miR399, a conserved miRNA previously shown to affect Pi uptake and translocation through the cleavage of
<i>PHOSPHATE2</i>
(
<i>PHO2</i>
). Consistently, analysis of 43
<i>NINV</i>
genes and 26 miR399 sequences from
<i>Arabidopsis thaliana</i>
,
<i>Populus trichocarpa</i>
,
<i>Manihot esculenta,</i>
and
<i>Solanum lycopersicum</i>
showed that various
<i>AtNINV</i>
,
<i>PtNINV</i>
,
<i>MeNINV,</i>
and
<i>SlNINV</i>
genes were regulated by miR399. It indicates that the miR399-
<i>NINV</i>
module exists widely in plants. Furthermore, Smi-miR399 also cleaved
<i>SmPHO2</i>
transcripts in
<i>S. miltiorrhiza</i>
, suggesting the complexity of
<i>NINVs</i>
,
<i>PHO2,</i>
and miR399 networks.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Caili</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Xiaoxiao</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Shanfa</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-6284-4389</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2016-I2M-3-016</GrantID>
<Agency>Chinese Academy of Medical Sciences</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>81603225, 81773836</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Plants (Basel)</MedlineTA>
<NlmUniqueID>101596181</NlmUniqueID>
<ISSNLinking>2223-7747</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">PHO2</Keyword>
<Keyword MajorTopicYN="N">Salvia milltiorrhiza</Keyword>
<Keyword MajorTopicYN="N">Smi-miR399</Keyword>
<Keyword MajorTopicYN="N">alkaline/neutral invertase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31717988</ArticleId>
<ArticleId IdType="pii">plants8110490</ArticleId>
<ArticleId IdType="doi">10.3390/plants8110490</ArticleId>
<ArticleId IdType="pmc">PMC6918228</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Mol Sci. 2018 Mar 12;19(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29534548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2018 Nov 21;18(1):290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30463514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Feb;227(3):565-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Sep 25;12(9):e0185286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28945799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e48951</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23155433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24275495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 22;10(9):e0138540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26393355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Mar;227(4):795-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(12):3353-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19474088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jul;141(3):1000-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Jul;64(5):575-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17508130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2011 Jul;32(1):83-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21533549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Jan;54(382):525-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12508063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Dec;9(12):606-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 20;7:1899</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28066461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Feb;18(2):412-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16387831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 14;285(20):15399-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20304912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1966-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Jun;82(6):951-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25912611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2015 Dec 14;4:62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2005 May;60(5):615-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15983871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Jun 6;9(6):949-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27018390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Apr;225(5):1193-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2014;11(11):1414-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25629686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Feb;8(1):38-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Mar;3(2):428-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20147371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Aug 14;19(8):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30110937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2018 Jun 06;23(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29882758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Sep 15;197(1-2):239-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9332372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Mar 24;6:188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25852730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W22-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22693224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 Nov;2(11):1107-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Dec;11(9):1080-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23926950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Feb 04;15:33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25648603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Sep;5(9):1131-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20930525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Nov;226(6):1535-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17674033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2016 Nov;35(11):2269-2283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27538912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jul;141(3):988-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yao Xue Xue Bao. 2013 Jul;48(7):1099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24133975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13124-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jan 25;11(1):e0147849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26808150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Mar 29;16:76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27025596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):163-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:33-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24579990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Jan 11;19(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29324672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1523-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18784281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Sep 5;7(1):10554</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28874707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2017 Aug 30;65(34):7361-7370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28783952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Apr;216(6):951-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12687362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):744-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Pharmacol. 2005 Dec;45(12):1345-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16291709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Feb;14(2):709-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26079224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jun;228(1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18317796</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhou, Hong" sort="Zhou, Hong" uniqKey="Zhou H" first="Hong" last="Zhou">Hong Zhou</name>
</noRegion>
<name sortKey="Li, Caili" sort="Li, Caili" uniqKey="Li C" first="Caili" last="Li">Caili Li</name>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<name sortKey="Qiu, Xiaoxiao" sort="Qiu, Xiaoxiao" uniqKey="Qiu X" first="Xiaoxiao" last="Qiu">Xiaoxiao Qiu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000695 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000695 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31717988
   |texte=   Systematic Analysis of Alkaline/Neutral Invertase Genes Reveals the Involvement of Smi-miR399 in Regulation of SmNINV3 and SmNINV4 in Salvia miltiorrhiza.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31717988" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020